If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3h^2+48h-2160=0
a = 3; b = 48; c = -2160;
Δ = b2-4ac
Δ = 482-4·3·(-2160)
Δ = 28224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{28224}=168$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-168}{2*3}=\frac{-216}{6} =-36 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+168}{2*3}=\frac{120}{6} =20 $
| 9+10t=9-9t+11t | | 1/5(10z-15)=-3z+4+5z | | 38=49-x | | 5t+16=6+(-5t) | | 2u+6.09=9.57 | | -2(3+8x)-4(4-x)=-6-6x | | x+2.3=1.42-5.2x+6.4x | | s+31/2s+26=65 | | 15-(4m-5)=320 | | 34=25+w | | -4=2(2y-8)+8y | | 2u+6.09=9.87 | | Y=x2-13x-12 | | -19/6a-5/3a=29/4 | | 4u-7.2=12.8 | | (2x+16)=(3x-7) | | -2(3+8x)-4(4–x)=-6x-6x | | 0.75x-2=-12 | | -3k-1=9 | | 7=-9x | | Y=7x+63 | | 3.4z=-40.8 | | 4.6-2u=2.6 | | 5(g+2)=10 | | 9v-33=5(v-9) | | -3y*(-2y)=30 | | P+p+p=3 | | 5x+15=3(2x+5) | | .3x+.6x=5.4 | | 3n+7=4+6(-4+2n) | | -30=-5/8w | | -18r+2r=18r+18 |